On generalized Gelfand pairs
نویسندگان
چکیده
منابع مشابه
Gelfand pairs
Let K ⊂ G be a compact subgroup of a real Lie group G. Denote by D(X) thealgebra of G-invariant differential operators on the homogeneous space X = G/K. ThenX is called commutative or the pair (G,K) is called a Gelfand pair if the algebra D(X)is commutative. Symmetric Riemannian homogeneous spaces introduced by Élie Cartanand weakly symmetric homogeneous spaces introduced by Sel...
متن کاملGelfand Pairs and Spherical Functions
This is a summary of the lectures delivered on Special Functions and Linear Representation of Lie Groups at the NSF-CBMS Research Conference at East Carolina University in March 5-9, 1979. The entire lectures will be published by the American Mathematical Society as a conference monograph in Mathematics.
متن کاملThe Uncertainty Principle for Gelfand Pairs
We extend the classical Uncertainty Principle to the context of Gelfand pairs. The Gelfand pair setting includes riemannian symmetric spaces, compact topological groups, and locally compact abelian groups. If the locally compact abelian group is Rn we recover a sharp form of the classical Heisenberg uncertainty principle. Section
متن کاملGelfand pairs associated with finite Heisenberg groups
A topological group G together with a compact subgroup K are said to form a Gelfand pair if the set L1(K\G/K) of K-bi-invariant integrable functions on G is a commutative algebra under convolution. The situation where G and K are Lie groups has been the focus of extensive and ongoing investigation. Riemannian symmetric spaces G/K furnish the most widely studied and best understood examples. ([H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1984
ISSN: 0386-2194
DOI: 10.3792/pjaa.60.30